
Enabling Interoperability Via Software Architecture

John A. Hamilton, Jr., Ph.D. Jeanne L. Murtagh
Lieutenant Colonel, US Army Major, US Air Force
Joint Forces Program Office Software Professional Development Program
Mail Code 05J1, SPAWAR School of Systems and Logistics

4301 Pacific Highway Air Force Institute of Technology (AFIT)
San Diego, CA 92110-3127 Wright-Patterson AFB, OH 45433-7765
drew@drew-hamilton.com murtagh-jl@acm.org

Abstract

This paper will address the critical role of software architecture in achieving large-scale system
interoperability as well as initiatives underway to promote architectural-based interoperability
solutions for the Unified Commands. Software architecture is the means to define systems
composed of systems. This definition is critical to achieving interoperability. Joint Publication
1-02 defines interoperability as “the ability of systems, units or forces to provide services to and
accept services from other systems, units or forces and use the services to enable them to operate
effectively together [JP 1-02, 1994].”

1. Introduction

In order to achieve interoperability, compatible systems, doctrine and policy must exist. The
technical challenges to interoperability can be daunting -- particularly when a new requirement is
established that requires existing (legacy) systems to interoperate. Military forces do not operate
as a fully connected graph; modern warfare does not require every system to interoperate. Joint
doctrine is the key to determining interoperability requirements. Doctrine tells us how to fight
and how we fight determines interoperability requirements. Policy sets the bounds on acceptable
doctrine.

[Alberts et al. 1999] discuss military capability packages in terms of DOTML-P (doctrine,
organization, training, materiel, leadership, and personnel.). From an interoperability standpoint,
it makes sense to focus on doctrine, organization and materiel, which Alberts et al. attribute to
the characterization used by US Atlantic Command (now US Joint Forces Command.) The
development of meaningful interoperability requirements is based upon:

• Doctrine: to identify why we interoperate.
• Organization: to determine who interoperates.
• Materiel: to provide the technical “how” we interoperated.

Doctrine and organization determine operational interoperability requirements. These
operational interoperability requirements determine system interoperability requirements.
Materiel solutions to meet system interoperability requirements must span programs, services
and system versions.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2000 2. REPORT TYPE

3. DATES COVERED
 00-00-2000 to 00-00-2000

4. TITLE AND SUBTITLE
Enabling Interoperability Via Software Architecture

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Space and Naval Warfare Systems Center,Joint Forces Program
Office,4301 Pacific Highway Mail Code 05J1,San Diego,CA,92110-3127

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Interoperability implies the existence of diverse systems that need to exchange data and services.
Much is written about “systems of systems.” A prime example of a system of systems is the
DOD Global Command and Control System (GCCS). GCCS integrates several applications.
The DOD GCCS program is managed by the Defense Information Systems Agency. Each
service has its own service implementation of GCCS with service-unique functionality and
applications added.

System interoperability is what makes heterogeneous systems of systems a reality. All of these
systems are composed of hardware and software. Hardware is not easily changed. Furthermore,
fielded hardware systems often cannot be wholly replaced. Therefore as a practical matter,
interoperability is more easily achieved through software and so therefore that is the focus of this
paper.

Diverse hardware-based communications systems require an overall software architecture in
order to interoperate. As noted in IEEE Standard 12207.0-1996 Software Lifecycle Processes,
software architecture describes the top-level structure of the over-arching system and describes
the software components [IEEE 1998]. Specifically, developers adhering to the standard are
required to development and document a top-level design for the interfaces external to the
software item and between the software components of the software item. This is an essential
first step in achieving interoperability between any two systems.

Figure 1. Two Dimensions of System Interoperability.

Software architecture development and implementation is complicated when the systems belong
to different organizations. Joint interoperability, that is, interoperability between different
services, is challenging. Sustained joint interoperability cuts across two dimensions: laterally
between services and horizontally over time as shown in Figure 1. Once two systems become
interoperable, there is no guarantee that they will remain interoperable if they are upgraded
asynchronously. Recognizing these challenges, the C2 system acquisition commands of the
Army, Navy and Air Force have developed an innovative initiative to promote joint
interoperability.

Army Systems

Navy Systems

 Across Time

Across
services

Air Force Systems

2. A Joint Interoperability Initiative from the Services.

The commanders of the service C2 acquisition centers, Communications and Electronics
Command, Fort Monmouth (CECOM), Space and Naval Warfare Systems Command, San
Diego (SPAWAR), Electronic Systems Center, Hanscom, AFB (ESC), formed the Joint
Command and Control Integration Interoperability Group (JC2I2G). The JC2I2G exists to
promote joint interoperability and change processes and structures by initiating “bottom up”
change to implement Joint C2 integration and interoperability, and by supporting the unified
commands in resolving interoperability issues of service-specific systems. Recognizing the
pivotal role the US Joint Forces Command (USJFCOM) as the Joint Force Integrator, the
Director, J6 of USJFCOM serves as principal member of the JC2I2G.

The JC2I2G proposed and the Under Secretary of Defense for Acquisition and Technology, Dr.
Jacques S. Gansler, approved the establishment of the CINC Interoperability Program Offices
(CIPO) at each C2 acquisition center and the establishment of the Joint Forces Program Office
(JFPO). The CIPOs now play a major role between the originators of joint requirements and the
designers of service C2 systems. The primary purpose of the Joint Forces Program Office is the
horizontal integration of the CIPO efforts across the Unified Commands in direct support of US
Joint Forces Command. The support relationships are outlined in Figure 2.

Figure 2. Alignment of Unified Commands and Supporting CIPOs.

 SSPPAAWWAARR CCEECCOOMM EESSCC

JJ
FF
PP
OO

USPACOM

USJFCOM

UNC KOREA

USEUCOM

USSOUTHCOM

USSOCOM

USCENTCOM

USSPACECOM

USSTRATCOM

USTRANSCOM

Although each CINC is supported by a single CIPO, the reality is that the interoperability
problems will be solved in the system commands, regardless of which CIPO staffs the action.
For example, consider an Army / Air Force interoperability program raised in the Pacific
Command. The SPAWAR CIPO takes the issue back to the appropriate Army and Air Force
PMs for action as illustrated below in Figure 3. It is not terribly important which CIPO initiates
the action. The key capability is the reach back to the service program managers.

Figure 3. Outline of CINC/CIPO/PM Interaction.

The JFPO is a tenant of SPAWAR, but a JC2I2G organization. The JFPO serves to:
• Act as CIPO coordinating authority to identify cross-CINC joint interoperability issues

and synchronize cross-CINC solutions where feasible.
• Provide technical/engineering support to USJFCOM in its role as executive agent for

Joint Forces Integration, to include providing USJFCOM with technology insertion
recommendations.

• Support USJFCOM in assessing joint interoperability during MNS/ORD/CRD
requirements and milestone reviews.

• Support USJFCOM in tracing future C4 systems requirements to other CINC needs and
solutions.

• Oversees JFCOM CIPO support.
• CIPO liaison to ASD(C3I), Joint Staff, DISA and other Defense agencies.

The special relationship between the JFPO, the Joint Interoperability Test Command (JITC) and
the JFCOM J6 provides the ability to do better requirements engineering in the development of
capstone requirement documents (CRDs) and operational requirement documents (ORDs). At
the request of the JFCOM J6, the JFPO evaluates proposed interoperability requirements via a
three parallel processes.

1. JFPO conducts a technical evaluation of the interoperability requirement.
2. The JFPO provides the interoperability requirement to each of the service CIPOs for

technical review.
3. The JITC evaluates the testability of the proposed interoperability requirement.

US
PACOM

SPAWAR
CIPO

ESC
CIPO

CECOM
CIPO

USAF PMs

Army PMs

The role of the JITC deserves special attention. Evaluating the testability of a requirement is
sound engineering practice and must be accomplished before moving into the design phase.

The CIPO/JFPO structure provides the Unified Commands with the engineering expertise to
catch and correct errors in requirements before these errors propagate throughout the rest of the
system. As the CINC staffs develop and refine operational requirements, technical expertise is
required to develop the system requirements. As interoperability requirements between systems
are developed and validated, a high-level software architecture is needed for the system
acquisition commands to develop designs that will be interoperable.

3. From Operational Requirements through System Requirements to Architectural Design

Requirements engineering is the first step towards achieving system interoperability.
Requirements engineering provides the basis for a software architecture which is essentially a
high-level design. It can be argued that the next logical step is horizontal integration as
illustrated in Figure 4.

Figure 4. From Requirements Engineering to Horizontal Integration.

The inclusion of Joint Information Exchange Requirements (JIERs) in operational requirements
documents (e.g. ORDS and CRDs) is required by CJCSI 3170 [CJCSI 1999]. From these JIERs,
system performance parameters are identified. These parameters are used to derive many of the
system’s technical requirements. These requirements must be incorporated into the system’s
architectural design. It is particularly important that the software architectural design be robust
and flexible since most future requirement changes will need to be implemented through
extension of this design.

How does one evaluate requirements development? [Kotonya & Sommerville 97] provide some
guidelines based on the model in Figure 5.

Figure 5. Requirements Engineering Process Improvement.

Initial ad hoc
requirements
engineering

Repeatable,
standardized

req. eng.

Defined
process based/
best practices

pract

Requirements
Engineering

Software
Architecture

Horizontal
Integration

Kotonya and Sommerville describe the following three levels of requirements engineering
maturity:
Level 1:

• Define a standard document structure
• Uniquely identify each requirement
• Define policies for requirements management
• Use checklists for requirements analysis

Level 2:
• Use scenarios to elicit requirements
• Specify requirements quantitatively
• Use prototyping to animate requirements

Level 3:
• Reuse requirements
• Specify systems using formal specifications

It is difficult to assign DOD requirements generation a “level score” nor is it important to do so.
In some areas, such as standard document structures, policies, and using scenarios, the DOD
excels. The effective use of formal specifications and checklists varies from organization to
organization. The successful development of requirements, evaluated for their testability,
technical feasibility and ability to satisfy operational needs leads to the development of a high
level design.

As noted in IEEE Standard 12207.0-1996 Software Lifecycle Processes, software architecture
describes the top-level structure of the over-arching system and describes the software
components [IEEE, 1998]. Specifically, developers adhering to the standard are required to
develop and document a top-level design for the interfaces external to the software item and
between the software components of the software item. This is an essential first step in
achieving interoperability between any two systems. Software architecture is the high-level
design developed from the requirements. [Hofmeister et al. 2000] write that software
architecture is the purposeful design plan of a system.

The definition of software architecture above is somewhat different what appears in many DOD
architecture efforts. There is a strong school of thought that architecture should capture every
detail about every subsystem. This is low-level design, not high-level design. Further the costs
of such an architecture strategy should not be underestimated. In a recent architecture project,
using the current DOD-approved system to produce the minimum set of required products, it
took more than 2100 man-hours to document 100 systems.

As [Bass et al. 1998] point out, “although computer programs can be combined in more or less
infinite ways, there is something to be gained by voluntarily restricting ourselves to a relatively
small number of choices when it comes to program cooperation and interaction.” Simpler is
often better from a design standpoint.

One way to simplify the complexity of the system interactions is to reduce the number of
external interfaces between systems. Consider the example in Figure 6. The diagram on the left
shows a collection of “systems of systems.” The “fishbone diagram” over GCCS-M represent

the subsystems that together make up GCCS-M. For METOC and GCCS-M to interoperate
requires external interfaces unless the systems are integrated. The interfaced systems on the left
have (N2-N)/2 possible interfaces. On the right is an illustration of SPAWAR’s plan for an
integrated product line. An integrated product line means the fleet receives a single product
delivery, with no after-delivery interfaces between systems. Horizontal integration is achieved
by low-level design which conforms to the software architecture

Figure 6. Horizontal Integration Example.

4. Conclusions

We have described the role of software architecture in the achievement of joint interoperability.
We discussed the role of the CIPOs and in particular, the JFPO, in brokering interoperability
solutions for the Unified Commands from the service C2 system acquisition commands. In this
capacity, the JFPO aids in the transformation of CINC-generated interoperability requirements
into architectural designs by the system acquisition commands. Bridging the gap between the
unified commands and the service C2 system acquisition commands makes it possible to
integrate service C2 systems into interoperable systems of systems.

Currently, program managers (PMs) field individual systems to support service components. In
the near-term we can expect PMs to field integrated product lines to support their service
components. When integrated product lines become the norm rather than the exception, we can
expect the application of horizontal integration in the joint arena.

The Joint Forces Program Office, with the Joint Interoperability Test Command and the Joint
Forces Command are working together to improve joint interoperability requirements. Improved
requirements can provide the basis for a software architecture that is the first step towards
achieving horizontal integration.

COMMS

GCCS-M

ADNS

NTCSS

METOC

GCCS-M

4.X

Network
s

IW
METOC

Messaging

TADILS

Telemed

07/01

NTCSS
NAVSSI

5. References

[Alberts et al. 1999] David S. Alberts, John J. Garstka, Frederick P. Stein, Network Centric
Warfare: Developing and Leveraging Information Superiority, DOD C4ISR Cooperative
Research Program, National Defense University, Washington, D.C, 1999.

[Bass et al. 1998] Len Bass, Paul Clements, Rick Kazman, Software Architecture in Practice,
Addison-Wesley, Reading, Mass., 1998.

[CJCSI 1999] Chairman of the Joint Chiefs of Staff Instruction 3170.01A, Requirements
Generation System, The Pentagon, 10 August 1999.

[Hofmeister et al. 2000] Christine Hofmeister, Robert Nord, and Dilip Soni, Applied Software
Architecture, Addison-Wesley, Reading, Mass., 2000.

[IEEE, 1998] IEEE Standard 12207.0-1996, Software Lifecycle Processes, the Institute of
Electrical and Electronics Engineers, New York, 1998.

[JP 1-02, 1994] Joint Publication 1-02, DOD Dictionary of Military & Associated Terms, 1994.

[Kotonya & Sommerville 97] Gerald Kotonya and Ian Sommerville, Requirements Engineering,
John Wiley & Sons, New York, 1997.

6. Authors
Lieutenant Colonel John A. (Drew) Hamilton, Jr., US Army, is the Director of the Joint Forces
Program Office. Previously he served as the Research Director for the Department of Electrical
Engineering and Computer Science at the US Military Academy, as Chief of the Ada Joint
Program Office. Chief, Officer Training Division at the Computer Science School, Fort Gordon.
Lt.Col. Hamilton has a B.A. in Journalism from Texas Tech University, where he was
commissioned in Field Artillery; an M.S. in Systems Management from the University of
Southern California and an M.S. in Computer Science from Vanderbilt University and a Ph.D. in
Computer Science at Texas A&M University. Lt.Col. Hamilton is a graduate of the Naval War
College with distinction. His book, Distributed Simulation, written with Major D. A. Nash and
Dr. Udo W. Pooch, was published by CRC Press.

Major Jeanne L. Murtagh, USAF, is currently the Director, Software Professional Development
Program (SPDP), School of Systems and Logistics, Air Force Institute of Technology.
Previously, she served as an assistant professor of computer science at the United States Military
Academy, an Acquisition Engineering Lead Instructor, Acquisition Training Branch, 3440th
Technical Training Squadron; Computer Systems Program Manager, Wright Research and
Development Center; Computer Systems Lead Engineer, Mission Avionics Division, Avionics
Laboratory, Wright-Patterson AFB; Software Manager, Joint Tactical Information Distribution
System (JTIDS) Joint Program Office. Major Murtagh was commissioned as an acquisition
engineering officer upon her graduation from Rensselaer Polytechnic Institute with a B.S.,
Computer Science. She has a M.S. in Computer Science from Boston University and is a
certified Level III acquisition professional. ..

